Streaming XML with Jabber/XMPP

Peter Saint-Andre and Ralph Meijer

May 1, 2005

Keywords

Application architecture, Data inter-
change, Distributed Systems, Enterprise
applications, Finance, Fragment, Health-
care, Internet, Interoperability, Middle-
ware, SOAP, SVG, Unicode, Web Services,
XML, XML-RPC, Atom, Messaging, Pres-
ence, Publish-Subscribe, Presence, RSS,
Streaming, Syndication

1 Introduction

The phrase ”streaming XML” may strike long-
time XML and SGML afficionados as an oxy-
moron. Isn’t XML all about stable (if extensible)
containers for documents and data?

It was, until Jeremie Miller developed the idea
of XML streams in 1998 and built a working im-
plementation in the jabberd instant messaging
and presence server that he released in early
1999. Since then, many more implementations
have been written, the core XML streaming
protocol has been formalized by the IETF under
the name Extensible Messaging and Presence
Protocol (XMPP), and Jabber/XMPP technolo-
gies have been extended far beyond the realm
of instant messaging to encompass everything
from network management systems to online
gaming networks to financial trading applica-
tions.

This paper provides a brief introduction to the
concepts of streaming XML and XML-based

communications as found in Jabber/XMPP
technologies.

2 Streams and Stanzas

As defined in RFC 3920 [RFC3920] (the core
XMPP specification), an XML stream is a con-
tainer for the exchange of XML [XML] elements

between any two entities over a network. Those
who are accustomed to thinking of XML in a
document-centric manner may wish to view
an XML stream as an open-ended XML doc-
ument that is built up over time by sending
XML elements over the stream, with the root
<stream/> element serving as the document
entity for the stream. However, this perspective
is a convenience only; XMPP does not deal in
documents but in XML streams and XML stan-
zas (the first-level child elements that are sent
over those streams).

While peer-to-peer implementations of XMPP
exist, most implementations follow a client-
server model that is familiar from email. When
a client connects to a server, it opens a stream
to the server and the server opens a stream to
the client (resulting in two streams, one in each
direction). After negotiation of various stream
parameters (including channel encryption and
appropriate authentication), each entity is free
to send an unbounded number of XML stanzas
over the stream. If a client addresses a stanza
to a non-local entity, its server will negotiate
a server-to-server stream with the foreign do-
main, the send the stanza over that server-to-
server stream for delivery to the non-local en-
tity. As a result, a client can send stanzas to any
network-addressible entity.

XMPP defines three core stanza types, each
with different semantics:

1. The <message/> stanza is a ”“push”
mechanism whereby one entity pushes in-
formation to another entity, similar to the
communications that occur in a system
such as email.

2. The <presence/> stanza is a basic broad-
cast or “publish-subscribe” mechanism,
whereby multiple entities receive infor-
mation about an entity to which they
have subscribed (in particular, information
about an entity’s network availability).

3. The <ig/> (Info/Query) stanza is a
request-response mechanism, similar in
some ways to HTTP, that enables an entity
to make a request of and receive a response
from another entity.

To date, these core stanza types have proven
sufficient for a wide variety of applications. The
key is that the stanza types provide the deliv-
ery semantics or “transport layer” for near-real-
time communications, whereas the content of
any given stanza is specified by its child el-
ements, which may be qualified by any XML
namespace. Thus the content of an XML stanza
is not a MIME type or an attachment but pure
XML, and XMPP can be used to exchange any
data that can be represented in XML, enabling
development of a wide variety of applications.

3 Core Services

As can be guessed from the preceding descrip-
tion of XML streams and XML stanzas, the
core functions of an XMPP server are to man-
age streams and to route stanzas. Since most
XML streams are negotiated over long-lived
TCP [RFC793] connections and XML stanzas
are simply first-level child elements sent over
the stream, it could be said that a minimal
XMPP implementation needs to do only two
things: (1) maintain TCP connections and (2) in-
crementally parse XML. In practice, however,
while it’s easy to write a basic XMPP imple-
mentation, it is much harder to write a really
good implementation. The reasons will become
clear as we look at the services expected of an
XMPP server or client.

Managing XML streams involves more than
just maintaining TCP connections. For in-
stance, RFC 3920 mandates that a server im-
plementation must support Transport Layer
Security (TLS) [RFC2246] for channel encryp-
tion, Simple Authentication and Security Layer
(SASL) [RFC2222] for authentication, DNS SRV
records [RFC2782] for port lookups, various
profiles of stringprep [RFC3454] for addresses
that can contain any Unicode character, UTF-
8 [RFC3629] for fully internationalized stream
content, and an XMPP-specific protocol for
binding a resource to the stream for network
addressing purposes. Servers must also stamp
XML stanzas with a validated “from” address

to prevent address spoofing (no spam from
bill@microsoft.com over XMPP!), enforce var-
ious stanza delivery rules, and comply with
some restrictions on XML usage in XMPP (such
as prohibitions on comments, processing in-
structions, and DTD subsets).

XMPP-based instant messaging and presence
servers provide even more core services (as de-
scribed in RFC 3921 [RFC3921]), including IM
session management, storage of contact lists,
implementation of a rather complicated state
machine related to presence subscriptions (i.e.,
control over access to a user’s availability infor-
mation), and enforcement of user-defined block
lists and allow lists for communication with
other entities on the network.

That may sound complex, and it is. Thankfully,
a guiding principle of the Jabber philosophy
since 1999 has been to keep most of the com-
plexity at the server. This has made it much eas-
ier to write clients, bots, components, and other
entities that connect to servers. One result has
been that there is a veritable plethora of Jab-
ber clients. Another has been that libraries for
writing clients and client-like entities (such as
bots) exist for just about every major program-
ming language (and some minor ones, too).
When it comes to experimenting with XMPP
and building Jabber applications, developers
have a great deal of options.

4 XMPP for Instant Messag-
ing and Presence

The first and still dominant application of
XMPP is instant messaging and presence. The
IM and presence implementations, best known
under the name ”Jabber”, are often called “the
Linux of instant messaging” because they pro-
vide a fully open alternative to closed, propri-
etary IM services such as ICQ, AIM, MSN Mes-
senger, and Yahoo! Instant Messenger. Since the
first Jabber code was released in January 1999,
millions of end users have downloaded one of
the many Jabber clients, hundreds of thousands
of system administrators have installed Jabber
servers, and thousands of developers have con-
tributed code or written custom Jabber exten-
sions. The result is a thriving open network
with tens of thousands of servers, and thou-
sands more private deployments at companies,

universities, non-profit organizations, and gov-
ernment agencies worldwide.

Because XMPP is an open wire protocol (re-
cently standardized by the IETF) rather than a
single codebase, multiple implementations and
licensing schemes are encouraged. So far there
are half a dozen open-source server implemen-
tations in C, Java, Python, and Erlang, as well
as closed-source implementations produced by
software vendors such as Jabber Inc., Antepo,
Winfessor, and Sun Microsystems. There are
open-source, freeware, shareware, and com-
mercial clients for common (Windows, MacOS,
Linux) and not-so-common (Amiga) personal
computing operating systems, handheld de-
vices running PalmOS and WinCE, and cell-
phone platforms like Symbian and J2ME. There
are Jabber code libraries for C, C++, C#, COM,
Delphi, Erlang, Flash, Java, JavaScript, Mono,
Objective-C, Perl, PHP, Python, Ruby, Tcl, and
more. Most server implementations are quite
modular, so it is relatively easy to write server-
side components for custom functionality.

The use of XML has helped the Jabber /XMPP
community develop a large number of ex-
tensions to the core protocol defined in RFC
3920. Extensions for basic IM and presence fea-
tures such as contact lists are specified in RFC
3921. The non-profit Jabber Software Foun-
dation (JSF), which contributed XMPP to the
IETF, continues to define more advanced XMPP
extensions through its series of Jabber En-
hancement Proposals (JEPs). Popular IM and
presence extensions include multi-user chat (a
la IRC), file transfer, XHTML-formatted mes-
sages, and “extended presence” functionality
such as publishing one’s avatar or current song.

Some of these extensions may seem frivolous,
and IM has the reputation for being a medium
that’s appropriate for nothing more weighty
than teen chat. Yet it would be a mistake to
downplay the impact that presence-enabled,
near-real-time messaging can have in an orga-
nization. Here are some examples from existing
XMPP deployments:

e Many of the world’s leading financial ser-
vices firms consider their XMPP-based
messaging systems to be more mission-
critical than their phone systems.

e Jabber technologies provide a crucial pres-
ence and communications infrastructure

for over 65 emergency management agen-
cies in the Washington, D.C., area.

e XMPP is the basis for presence-driven ser-
vices such as push-to-talk and push-to-
video at several large mobile telephony
providers.

e A large healthcare provider uses Jabber
IM systems to enable rapid communica-
tion between patients, nurses, and medical
experts.

As we can see, IM is not just for teens anymore.

5 XMPP Beyond IM

But XMPP is much more than IM. The seman-
tics of the <message/>, <presence/>, and
<ig/> stanzas provide a generalized commu-
nication layer, making it possible to develop
and deploy a wide range of presence-enabled
applications. Consider a few examples:

e A partnership among some of the world’s
largest foreign exchange trading banks
is transitioning its $100-billion-a-day spot
dealing system to an XMPP foundation
for improved extensibility and integration
with back-end systems.

o A content syndication company provides a
free service that enables near-real-time de-
livery of information from millions of RSS
and Atom feeds, using the XMPP publish-
subscribe extension to solve the problem of
continuous polling for feed updates.

e Using standard XMPP protocols and sev-
eral custom extensions, a network man-
agement company ships software that en-
ables a system administrator to monitor
the availability, uptime, and other vital
statistics of routers and other deployed in-
frastructure.

e A university research project uses XMPP
and the Jabber-RPC protocol extension to
simulate catastrophic network failures on
the Internet.

o A telematics company offers an inte-
grated hardware/software solution that
uses XMPP presence to track fleet vehicles

and thus reduce losses due to theft and
vandalism.

e A commercial software company uses the
SOAP XMPP binding both to provide a
web services interface to native XMPP ser-
vices and to enable interaction between
XMPP entities and HTTP-accessible web
services.

e An open-source project sponsored by a
major technical institute is building a dis-
tributed whiteboarding system that passes
snippets of SVG over XMPP in order to
synchronize multiple displays.

6 Key XMPP Extensions

Core XMPP functionality is specified in RFCs
3920 and 3921, published by the Internet Engi-
neering Task Force. But the Jabber /XMPP com-
munity continues to innovate in the realm of
XMPP protocol extensions. Some of the key ex-
tensions include the following documents pub-
lished in the Jabber Software Foundation’s JEP
series:

e JEP-0030 [JEP0030]: Service Discovery — a
robust protocol for determining the fea-
tures supported by other entities on an
XMPP network.

e JEP-0115 [JEPO115]: Entity Capabilities — a
real-time profile of JEP-0030 [JEP0030] for
advertising capability changes via pres-
ence.

e JEP-0004 [JEP0004]: Data Forms — a flexi-
ble protocol for forms-handling via XMPP,
mainly used in workflow applications and
for dynamic configuration.

e JEP-0045 [JEP0045]: Multi-User Chat —a set
of protocols for participating in and ad-
ministering multi-user chat rooms, similar
to Internet Relay Chat but with stronger
security.

e JEP-0096 [JEP0096]: File Transfer — a
protocol for transferring files from one
XMPP entity to another based on stream
initiation (JEP-0095 [JEP0095]) and sev-
eral bytestreaming extensions (JEP-0047
[JEP0047], JEP-0065 [JEP0065]).

e JEP-0071 [JEP0071]: XHTML-IM - a
W3C-reviewed protocol for exchanging
XHTML-formatted messages between
XMPP entities.

e JEP-0124 [JEP0124]: HTTP Binding - a
binding of XMPP to HTTP rather than
TCP, mainly used for devices that cannot
maintain persistent TCP connections to a
server.

e JEP-0060 [JEP0060]: Publish-Subscribe —
a generalized framework for publish-
subscribe functionality, mainly used to de-
ploy content syndication, extended pres-
ence, and event notification services.

The JEP series also defines XMPP extensions
for a wide range of additional features, in-
cluding XML-RPC and SOAP bindings (JEP-
0009 [JEPO009] and JEP-0072 [JEP0072]), in-
band registration (JEP-0077 [JEP0077]), ex-
tended presence (JEP-0119 [JEP0119]), geoloca-
tion (JEP-0080 [JEP0080]), and reliable message
delivery (JEP-0079 [JEP0079]).

7 The Future of XMPP

While Jabber/XMPP technologies have been
growing in usefulness and popularity since
they were first released in January 1999, IETF
approval of the core protocols in October 2004
has led to significant new implementations
(Sun, Apple), major new deployments (U.S.
Government), and renewed activity by open-
source projects and commercial software devel-
opers alike.

What does the future hold for XMPP? It is al-
ways difficult to know how a particular tech-
nology will be applied, but several trends seem
clear:

e XMPP technologies (especially the pub-
sub extension) will be used in more and
more applications — whenever presence in-
formation, event notification, or real-time
content delivery is needed.

e Increasing adoption will lead to conver-
gence on a handful of implementations
for particular platforms and fewer proto-
col extensions over time as more deploy-
ments come to depend on XMPP technolo-
gies.

e Software tools vendors will make it much
easier for developers to write XMPP front
ends (e.g., in J2ME and Flash) and server-
side services (e.g., in Python and Java).

e Responding to pressure from financial ser-
vices firms and perhaps a major XMPP-
based entrant into the market, the tradi-
tional consumer IM services will begin
to offer federated access to their systems
from XMPP deployments.

No one claims that XMPP technologies will
achieve world domination next Thursday, or
ever. Different technologies are appropriate for
different requirements, and most technologies
eventually become so stale that someone de-
cides to design a replacement. But as life be-
comes faster and faster, more developers, or-
ganizations, and service providers decide to
deploy XMPP technologies because they pro-
vide near-real-time delivery of structured data
and presence information. And that’s reason
enough to think that streaming XML was not
such a bad idea after all.

References

[JEPO009] Adams, DJ. JEP-0009: Jabber-RPC.
Jabber Software Foundation, De-
cember 2002 (Cited in section 6.)
[XML] Bray, Tim, Jean Paoli, CM.
Sperberg-McQueen, Eve Maler
and Francois Yergeau. Extensi-
ble Markup Language (XML) 1.0
(Third Edition). World Wide Web
Consortium, February 2004 (Cited
in section 2.)

[REC2246] Dierks, Tim and Christopher Allen.
RFC 2246: The TLS Protocol, Ver-
sion 1.0. Internet Engineering Task
Force, January 1999 (Cited in sec-
tion 3.)

[JEP0004] Eatmon, Ryan, Joe Hildebrand,
Jeremie Miller, Thomas Mul-
downey and Peter Saint-Andre.
JEP-0004: Data Forms. Jabber Soft-
ware Foundation, November 2004
(Cited in section 6.)

[JEP0072]

[RFC2782]

[JEP0O080]

[JEPO115]

[JEP0030]

[RFC3454]

[JEP0047]

[JEP0060]

[JEP0079]

[JEP0095]

Forno, Fabio and Peter Saint-
Andre. JEP-0072: SOAP Over
XMPP. Jabber Software Founda-
tion, April 2005 (Cited in section 6.)

Gulbrandsen, Arnt, Paul Vixie and
Levon Esibov. RFC 2782: A DNS
RR for specifying the location of
services (DNS SRV). Internet Engi-
neering Task Force, February 2000
(Cited in section 3.)

Hildebrand, Joe and Peter Saint-
Andre. JEP-0080: User Geolocation.
Jabber Software Foundation, Octo-
ber 2004 (Cited in section 6.)

Hildebrand, Joe and Peter Saint-
Andre. JEP-0115: Entity Capabili-
ties. Jabber Software Foundation,
November 2004 (Cited in section 6.)

Hildebrand, Joe, Peter Miillard,
Ryan Eatmon and Peter Saint-
Andre. JEP-0030: Service Discov-
ery. Jabber Software Foundation,
April 2005 (Cited in section 6.)

Hoffman, Paul and Marc Blanchet.
RFC 3454: Preparation of Inter-
nationalized Strings (”stringprep”).
Internet Engineering Task Force,
December 2002 (Cited in section 3.)

Karneges, Justin. JEP-0047: In-Band
Bytestreams. Jabber Software Foun-
dation, December 2003 (Cited in
section 6.)

Millard, Peter, Peter Saint-Andre
and Ralph Meijer. JEP-0060:
Publish-Subscribe. Jabber Software
Foundation, March 2005 (Cited in
section 6.)

Miller, Matthew and Peter Saint-
Andre. JEP-0079: Advanced Mes-
sage Processing. Jabber Software
Foundation, October 2004 (Cited in
section 6.)

Muldowney, Thomas, Matthew
Miller and Ryan Eatmon. JEP-0095:
Stream Initiation. Jabber Software
Foundation, April 2004 (Cited in
section 6.)

http://www.jabber.org/jeps/jep-0009.html
http://www.jabber.org/jeps/jep-0004.html
http://www.jabber.org/jeps/jep-0072.html
http://www.jabber.org/jeps/jep-0072.html
http://www.jabber.org/jeps/jep-0080.html
http://www.jabber.org/jeps/jep-0115.html
http://www.jabber.org/jeps/jep-0115.html
http://www.jabber.org/jeps/jep-0030.html
http://www.jabber.org/jeps/jep-0030.html
http://www.jabber.org/jeps/jep-0047.html
http://www.jabber.org/jeps/jep-0047.html
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0079.html
http://www.jabber.org/jeps/jep-0079.html
http://www.jabber.org/jeps/jep-0095.html
http://www.jabber.org/jeps/jep-0095.html

[JEP0096]

[RFC2222]

[REC793]

[JEP0077]

[JEP0071]

[RFC3920]

[RFC3921]

[JEP0119]

[JEP0045]

[JEP0065]

Muldowney, Thomas, Matthew
Miller and Ryan Eatmon. JEP-0096:
File Transfer. Jabber Software
Foundation, April 2004 (Cited in
section 6.)

Myers, John. RFC 2222: Simple
Authentication and Security Layer
(SASL). Internet Engineering Task
Force, October 1997 (Cited in sec-
tion 3.)

Postel, Jon. RFC 793: Transmission
Control Protocol (TCP). Internet
Engineering Task Force, September
1981 (Cited in section 3.)

Saint-Andre, Peter. JEP-0077: In-
Band Registration. Jabber Software
Foundation, August 2004 (Cited in
section 6.)

Saint-Andre, Peter. JEP-0071:
XHTML-IM. Jabber Software Foun-
dation, September 2004 (Cited in
section 6.)

Saint-Andre, Peter. RFC 3920: Ex-
tensible Messaging and Presence
Protocol (XMPP): Core. Internet En-
gineering Task Force, October 2004
(Cited in section 2.)

Saint-Andre, Peter. RFC 3921: Ex-
tensible Messaging and Presence
Protocol (XMPP): Instant Messag-
ing and Presence. Internet Engi-
neering Task Force, October 2004
(Cited in section 3.)

Saint-Andre, Peter. JEP-0119: Ex-
tended Presence Protocol Suite. Jab-
ber Software Foundation, March
2005 (Cited in section 6.)

Saint-Andre, Peter. JEP-0045: Multi-
User Chat. Jabber Software Foun-
dation, April 2005 (Cited in sec-
tion 6.)

Smith, Dave, Matthew Miller
and Peter Saint-Andre. JEP-0065:
SOCKS5 Bytestreams. Jabber Soft-
ware Foundation, November 2004
(Cited in section 6.)

[JEP0124]

[RFC3629]

Smith, Dave, Peter Saint-Andre and
Ian Paterson. JEP-0124: HTTP Bind-
ing. Jabber Software Foundation,
March 2005 (Cited in section 6.)

Yergeau, Francois. RFC 3629: UTF-
8, a transformation format of ISO
10646. Internet Engineering Task
Force, November 2003 (Cited in
section 3.)

http://www.jabber.org/jeps/jep-0096.html
http://www.jabber.org/jeps/jep-0096.html
http://www.jabber.org/jeps/jep-0077.html
http://www.jabber.org/jeps/jep-0077.html
http://www.jabber.org/jeps/jep-0071.html
http://www.jabber.org/jeps/jep-0071.html
http://www.jabber.org/jeps/jep-0119.html
http://www.jabber.org/jeps/jep-0119.html
http://www.jabber.org/jeps/jep-0045.html
http://www.jabber.org/jeps/jep-0045.html
http://www.jabber.org/jeps/jep-0065.html
http://www.jabber.org/jeps/jep-0065.html
http://www.jabber.org/jeps/jep-0124.html
http://www.jabber.org/jeps/jep-0124.html

	1 Introduction
	2 Streams and Stanzas
	3 Core Services
	4 XMPP for Instant Messaging and Presence
	5 XMPP Beyond IM
	6 Key XMPP Extensions
	7 The Future of XMPP

