
Jabber, E-mail and Beyond

Ralph Meijer and Peter Saint-Andre

May 2, 2005

Keywords

Application architecture, Data inter-
change, Distributed Systems, E-mail, En-
terprise applications, Finance, Fragment,
Internet, Interoperability, Middleware,
SOAP, SVG, Unicode, Web Services,
XML, XML-RPC, Atom, Messaging, Pres-
ence, Publish-Subscribe, Presence, RSS,
Streaming, Syndication

1 Introduction

The proliferation of spam, viruses and other
malware threatens e-mail, with SMTP
[RFC2821] as its core protocol, to come to
grinding halt. Many have tried to address
these issues, with varying amounts of success,
but so far, the outlook is grim. Jabber started as
a solution to the problem of having multiple
clients for different instant messaging net-
works running simultaneously. Jabber shares
some similarities with e-mail in how they
came into existence and how it is architected,
although they grew from two totally different
starting points.

This paper provides a brief introduction to the
concepts of streaming XML and XML-based
communications as found in Jabber/XMPP
technologies, how it solves problems found in
e-mail as it is used today, and how it goes be-
yond that.

2 Streams and Stanzas

Jeremie Miller thought up and built the jabberd
instant messaging and presence server, using a
protocol based on XML Streams and publicly re-
leased it in early 1999. Since then, many more
implementations have been written, the core

XML streaming protocol has been formalized
by the IETF under the name Extensible Mes-
saging and Presence Protocol (XMPP), and Jab-
ber/XMPP technologies have been extended
far beyond the realm of instant messaging to
encompass everything from network manage-
ment systems to online gaming networks to fi-
nancial trading applications.

As defined in RFC 3920 [RFC3920] (the core
XMPP specification), an XML stream is a con-
tainer for the exchange of XML [XML] elements
between any two entities over a network. Those
who are accustomed to thinking of XML in a
document-centric manner may wish to view
an XML stream as an open-ended XML doc-
ument that is built up over time by sending
XML elements over the stream, with the root
<stream/> element serving as the document
entity for the stream. However, this perspective
is a convenience only; XMPP does not deal in
documents but in XML streams and XML stan-
zas (the first-level child elements that are sent
over those streams).

While peer-to-peer implementations of XMPP
exist, most implementations follow a client-
server model that is familiar from e-mail. When
a client connects to a server, it opens a stream
to the server and the server opens a stream to
the client (resulting in two streams, one in each
direction). After negotiation of various stream
parameters (including channel encryption and
appropriate authentication), each entity is free
to send an unbounded number of XML stanzas
over the stream. If a client addresses a stanza
to a non-local entity, its server will negotiate
a server-to-server stream with the foreign do-
main, the send the stanza over that server-to-
server stream for delivery to the non-local en-
tity. As a result, a client can send stanzas to any
network-addressable entity.

XMPP defines three core stanza types, each
with different semantics:



1. The <message/> stanza is a ”push”
mechanism whereby one entity pushes in-
formation to another entity, similar to the
communications that occur in a system
such as email.

2. The <presence/> stanza is a basic broad-
cast or ”publish-subscribe” mechanism,
whereby multiple entities receive infor-
mation about an entity to which they
have subscribed (in particular, information
about an entity’s network availability).

3. The <iq/> (Info/Query) stanza is a
request-response mechanism, similar in
some ways to HTTP, that enables an entity
to make a request of and receive a response
from another entity.

To date, these core stanza types have proven
sufficient for a wide variety of applications. The
key is that the stanza types provide the deliv-
ery semantics or transport layer for near-real-
time communications, whereas the content of
any given stanza is specified by its child el-
ements, which may be qualified by any XML
namespace. Thus the content of an XML stanza
is not a MIME type or an attachment but pure
XML, and XMPP can be used to exchange any
data that can be represented in XML, enabling
development of a wide variety of applications.

3 Core Services

As can be guessed from the preceding de-
scription of XML streams and XML stanzas,
the core functions of an XMPP server are to
manage streams and to route stanzas. Most
XML streams are negotiated over long-lived
TCP [RFC793] connections and XML stanzas
are simply first-level child elements sent over
the stream.

Managing XML streams involves more than
just maintaining TCP connections. RFC 3920
mandates that a server implementation must
support Transport Layer Security (TLS)
[RFC2246] for channel encryption, Simple
Authentication and Security Layer (SASL)
[RFC2222] for authentication, DNS SRV
records [RFC2782] for port lookups, various
profiles of stringprep [RFC3454] for addresses
that can contain any Unicode character, UTF-8

[RFC3629] for fully internationalized stream
content, and an XMPP-specific protocol for
binding a resource to the stream for network
addressing purposes. Servers must also stamp
XML stanzas with a validated ”from” address
to prevent address spoofing, enforce various
stanza delivery rules, and comply with some
restrictions on XML usage in XMPP (such
as prohibitions on comments, processing
instructions, and DTD subsets).

4 Comparing with E-mail

As a message delivery platform, Jabber shares
the basic structure of interconnected servers
and client connecting to one server to send and
receive messages. In contrast, XMPP uses the
same protocol for sending and receiving data.
No polling is required, because clients main-
tain a connection to their server as long as it is
running. As e-mail uses the store and forward
principle for delivering messages, end-to-end
latency is usually measured in minutes, hours.
It is also common that messages cross more
than two servers between end points. In Jab-
ber, there are usually no intermediate servers
and messages are delivered in near-real-time,
ie. measured in seconds or less. If a delivery
fails, because a server is not reachable, or a
client has gone offline, resending is not tried.
Instead the originator immediately gets an er-
ror message back.

The use of TLS and SASL, between clients and
servers, but also between servers, combined
with strict address checks, make it hard to
abuse Jabber for spam and virus distribution.
On top of that, the XMPP-based instant mes-
saging and presence servers provide more core
services (as described in RFC 3921 [RFC3921]),
among which user-defined block lists and al-
low lists for communication between other en-
tities on the network.

Besides messaging, Jabber/XMPP brings pres-
ence to the table. Sometimes underestimated,
presence is of great value in communication.
Knowing that your communication partner is
available makes sure you know that your mes-
sages have a high probability of being read
right as you send them. It is what makes mes-
saging feel instant. Also it is a hint to the
server where to send messages. Jabber allows
multiple, simultaneous client connections to a



server for the same user. For example, someone
could connect from his desktop machine and
his handheld device. Walking from the desk-
top would make the presence there to become
’away’, but as the handheld device is still avail-
able, messages are automatically routed there.

5 Key XMPP Extensions

XMPP is an open wire protocol, and because
of that, there exists a multitude of implemen-
tations of both servers in clients. Commer-
cial or open source, in any imaginable lan-
guage and for just about any platform, includ-
ing handheld devices. The use of XML has
helped the Jabber/XMPP community develop
a large number of extensions to the core pro-
tocol defined in RFC 3920. Extensions for basic
IM and presence features such as contact lists
are specified in RFC 3921. The non-profit Jabber
Software Foundation (JSF), which contributed
XMPP to the IETF, continues to define more ad-
vanced XMPP extensions through its series of
Jabber Enhancement Proposals (JEPs). Some of
the key extensions include the following docu-
ments published in the JEP series:

• JEP-0030 [JEP0030]: Service Discovery – a
robust protocol for determining the fea-
tures supported by other entities on an
XMPP network.

• JEP-0115 [JEP0115]: Entity Capabilities – a
real-time profile of JEP-0030 [JEP0030] for
advertising capability changes via pres-
ence.

• JEP-0004 [JEP0004]: Data Forms – a flexi-
ble protocol for forms-handling via XMPP,
mainly used in workflow applications and
for dynamic configuration.

• JEP-0096 [JEP0096]: File Transfer – a
protocol for transferring files from one
XMPP entity to another based on stream
initiation (JEP-0095 [JEP0095]) and sev-
eral bytestreaming extensions (JEP-0047
[JEP0047], JEP-0065 [JEP0065]).

• JEP-0071 [JEP0071]: XHTML-IM – a
W3C-reviewed protocol for exchanging
XHTML-formatted messages between
XMPP entities.

XML not being a very good container for binary
data, Jabber enables end points to negotiate
data streams that take place out of band. This
could be simple file streams or video streams,
in a peer-to-peer fashion, via proxies or from
another point in the network, using the best
protocols for that purpose. This frees the server
of processing large quantities of data (includ-
ing storage). Combined with service discovery,
this also gives users a choice in what data they
are receiving (cost, convenience) and tailored
to what the currently used client or device can
handle (capabilities).

The JEP series also defines XMPP extensions
for a wide range of additional features, includ-
ing XML-RPC [JEP0009] and SOAP [JEP0072]
bindings, in-band registration [JEP0077], HTTP
binding instead of TCP [JEP0124], Multi-User
Chat [JEP0045]) and reliable message delivery
[JEP0079].

6 Beyond Messaging

Mailing lists are a good example of a system
that uses publish-subscribe as its core design
pattern is mailing lists. A mailing list usually
revolves around a certain topic and has a list of
subscribers. Every time someone wants publish
some message, it sends an e-mail to this list. Ev-
ery subscriber will get a copy of this message
(notification.

JEP-0060 [JEP0060] builds on this concept and
defines a generalized framework for publish-
subscribe functionality, that can be used to de-
ploy content syndication, extended presence,
and event notification services. A publish-
subscribe service keeps the list of topics and
their subscribers, and sends out notifications
on behalf of the publisher. This allows entities
to publish information without having the bur-
den of manually distributing it to all interested
parties, and at the same time prevents the unso-
licited broadcast of information to all contacts.

Extended presence [JEP0119] can gives hints
about what a contact is feeling (user mood), do-
ing (user activity), listening to (user tune) and
where he is (geolocation [JEP0080]. Although
user mood and user tune may seem frivolous,
what someone is currently doing and where,
combined with availability information (nor-
mal presence), can be very valuable in deciding



if and how to communicate with the contact.
User activity includes things like on-the-phone,
having-a-meeting or in-transit. In business set-
tings this could be used to decide which of a
selection of qualified people can be addressed
to solve a problem. The location of your peo-
ple or vehicles (Jabber is also very suitable for
communication with non-human entities) has
already been proven to be essential.

Content syndication using publish-subscribe is
much more efficient than present-day polling
of RSS or Atom feeds. Why not directly publish
your news items to a publish-subscribe topic,
and let your readership be instantly notified?
Note that subscribers would not need to be di-
rectly subscribed, but via publish-subscribe re-
peaters, for maximum efficiency gains. Exam-
ples of this are Mimı́r, and PubSub.com.

Of course, every owner of a publish-subscribe
topic has full control over who can subscribe
and publish to that topic. A subscription may
be configurable to control how and when no-
tifications are sent. This also enables content-
based subscriptions, besides the usual topic-
based subscription model. Also, topics can be
grouped into collections, so that entities can be
notified of events from different topic at once,
or of the addition of new topics.

7 The Future

While Jabber/XMPP technologies have been
growing in usefulness and popularity since
they were first released in January 1999, IETF
approval of the core protocols in October 2004
has led to significant new implementations
(Sun, Apple), major new deployments (U.S.
Government), and renewed activity by open-
source projects and commercial software devel-
opers alike.

What does the future hold for XMPP? It is al-
ways difficult to know how a particular tech-
nology will be applied, but several trends seem
clear:

• XMPP technologies (especially the pub-
sub extension) will be used in more and
more applications – whenever presence in-
formation, event notification, or real-time
content delivery is needed.

• Increasing adoption will lead to conver-
gence on a handful of implementations
for particular platforms and fewer proto-
col extensions over time as more deploy-
ments come to depend on XMPP technolo-
gies.

• Software tools vendors will make it much
easier for developers to write XMPP front
ends (e.g., in J2ME and Flash) and server-
side services (e.g., in Python and Java).

• Responding to pressure from financial ser-
vices firms and perhaps a major XMPP-
based entrant into the market, the tradi-
tional consumer IM services will begin
to offer federated access to their systems
from XMPP deployments.

Also, we can see e-mail being overtaken by IM.
Both because of the popularity of more direct
communication, and because of the growing
dislike of the problems surrounding the use of
e-mail as it exists today. E-mail is not limited
to the use of SMTP, POP and IMAP. Instead,
it could very well be reimplemented on top of
XMPP.

References

[JEP0009] Adams, DJ. JEP-0009: Jabber-RPC.
Jabber Software Foundation, De-
cember 2002 (Cited in section 5.)

[XML] Bray, Tim, Jean Paoli, C.M.
Sperberg-McQueen, Eve Maler
and Francois Yergeau. Extensi-
ble Markup Language (XML) 1.0
(Third Edition). World Wide Web
Consortium, February 2004 (Cited
in section 2.)

[RFC2246] Dierks, Tim and Christopher Allen.
RFC 2246: The TLS Protocol, Ver-
sion 1.0. Internet Engineering Task
Force, January 1999 (Cited in sec-
tion 3.)

[JEP0004] Eatmon, Ryan, Joe Hildebrand,
Jeremie Miller, Thomas Mul-
downey and Peter Saint-Andre.
JEP-0004: Data Forms. Jabber Soft-
ware Foundation, November 2004
(Cited in section 5.)

http://mimir.ik.nu/
http://www.pubsub.com/
http://www.jabber.org/jeps/jep-0009.html
http://www.jabber.org/jeps/jep-0004.html


[JEP0072] Forno, Fabio and Peter Saint-
Andre. JEP-0072: SOAP Over
XMPP. Jabber Software Founda-
tion, April 2005 (Cited in section 5.)

[RFC2782] Gulbrandsen, Arnt, Paul Vixie and
Levon Esibov. RFC 2782: A DNS
RR for specifying the location of
services (DNS SRV). Internet Engi-
neering Task Force, February 2000
(Cited in section 3.)

[JEP0080] Hildebrand, Joe and Peter Saint-
Andre. JEP-0080: User Geolocation.
Jabber Software Foundation, Octo-
ber 2004 (Cited in section 6.)

[JEP0115] Hildebrand, Joe and Peter Saint-
Andre. JEP-0115: Entity Capabili-
ties. Jabber Software Foundation,
November 2004 (Cited in section 5.)

[JEP0030] Hildebrand, Joe, Peter Millard,
Ryan Eatmon and Peter Saint-
Andre. JEP-0030: Service Discov-
ery. Jabber Software Foundation,
April 2005 (Cited in section 5.)

[RFC3454] Hoffman, Paul and Marc Blanchet.
RFC 3454: Preparation of Inter-
nationalized Strings (”stringprep”).
Internet Engineering Task Force,
December 2002 (Cited in section 3.)

[JEP0047] Karneges, Justin. JEP-0047: In-Band
Bytestreams. Jabber Software Foun-
dation, December 2003 (Cited in
section 5.)

[RFC2821] Klensin, J. RFC 2821: Simple Mail
Transfer Protocol. Internet Engi-
neering Task Force, April 2001
(Cited in section 1.)

[JEP0060] Millard, Peter, Peter Saint-Andre
and Ralph Meijer. JEP-0060:
Publish-Subscribe. Jabber Software
Foundation, March 2005 (Cited in
section 6.)

[JEP0079] Miller, Matthew and Peter Saint-
Andre. JEP-0079: Advanced Mes-
sage Processing. Jabber Software
Foundation, October 2004 (Cited in
section 5.)

[JEP0095] Muldowney, Thomas, Matthew
Miller and Ryan Eatmon. JEP-0095:
Stream Initiation. Jabber Software
Foundation, April 2004 (Cited in
section 5.)

[JEP0096] Muldowney, Thomas, Matthew
Miller and Ryan Eatmon. JEP-0096:
File Transfer. Jabber Software
Foundation, April 2004 (Cited in
section 5.)

[RFC2222] Myers, John. RFC 2222: Simple
Authentication and Security Layer
(SASL). Internet Engineering Task
Force, October 1997 (Cited in sec-
tion 3.)

[RFC793] Postel, Jon. RFC 793: Transmission
Control Protocol (TCP). Internet
Engineering Task Force, September
1981 (Cited in section 3.)

[JEP0077] Saint-Andre, Peter. JEP-0077: In-
Band Registration. Jabber Software
Foundation, August 2004 (Cited in
section 5.)

[JEP0071] Saint-Andre, Peter. JEP-0071:
XHTML-IM. Jabber Software Foun-
dation, September 2004 (Cited in
section 5.)

[RFC3920] Saint-Andre, Peter. RFC 3920: Ex-
tensible Messaging and Presence
Protocol (XMPP): Core. Internet En-
gineering Task Force, October 2004
(Cited in section 2.)

[RFC3921] Saint-Andre, Peter. RFC 3921: Ex-
tensible Messaging and Presence
Protocol (XMPP): Instant Messag-
ing and Presence. Internet Engi-
neering Task Force, October 2004
(Cited in section 4.)

[JEP0119] Saint-Andre, Peter. JEP-0119: Ex-
tended Presence Protocol Suite. Jab-
ber Software Foundation, March
2005 (Cited in section 6.)

[JEP0045] Saint-Andre, Peter. JEP-0045: Multi-
User Chat. Jabber Software Foun-
dation, April 2005 (Cited in sec-
tion 5.)

http://www.jabber.org/jeps/jep-0072.html
http://www.jabber.org/jeps/jep-0072.html
http://www.jabber.org/jeps/jep-0080.html
http://www.jabber.org/jeps/jep-0115.html
http://www.jabber.org/jeps/jep-0115.html
http://www.jabber.org/jeps/jep-0030.html
http://www.jabber.org/jeps/jep-0030.html
http://www.jabber.org/jeps/jep-0047.html
http://www.jabber.org/jeps/jep-0047.html
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0079.html
http://www.jabber.org/jeps/jep-0079.html
http://www.jabber.org/jeps/jep-0095.html
http://www.jabber.org/jeps/jep-0095.html
http://www.jabber.org/jeps/jep-0096.html
http://www.jabber.org/jeps/jep-0096.html
http://www.jabber.org/jeps/jep-0077.html
http://www.jabber.org/jeps/jep-0077.html
http://www.jabber.org/jeps/jep-0071.html
http://www.jabber.org/jeps/jep-0071.html
http://www.jabber.org/jeps/jep-0119.html
http://www.jabber.org/jeps/jep-0119.html
http://www.jabber.org/jeps/jep-0045.html
http://www.jabber.org/jeps/jep-0045.html


[JEP0065] Smith, Dave, Matthew Miller
and Peter Saint-Andre. JEP-0065:
SOCKS5 Bytestreams. Jabber Soft-
ware Foundation, November 2004
(Cited in section 5.)

[JEP0124] Smith, Dave, Peter Saint-Andre and
Ian Paterson. JEP-0124: HTTP Bind-
ing. Jabber Software Foundation,
March 2005 (Cited in section 5.)

[RFC3629] Yergeau, Francois. RFC 3629: UTF-
8, a transformation format of ISO
10646. Internet Engineering Task
Force, November 2003 (Cited in
section 3.)

http://www.jabber.org/jeps/jep-0065.html
http://www.jabber.org/jeps/jep-0065.html
http://www.jabber.org/jeps/jep-0124.html
http://www.jabber.org/jeps/jep-0124.html

	1 Introduction
	2 Streams and Stanzas
	3 Core Services
	4 Comparing with E-mail
	5 Key XMPP Extensions
	6 Beyond Messaging
	7 The Future

